Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
IntroductionDecoding an individual's hidden brain states in responses to musical stimuli under various cognitive loads can unleash the potential of developing a non-invasive closed-loop brain-machine interface (CLBMI). To perform a pilot study and investigate the brain response in the context of CLBMI, we collect multimodal physiological signals and behavioral data within the working memory experiment in the presence of personalized musical stimuli. MethodsParticipants perform a working memory experiment called then-back task in the presence of calming music and exciting music. Utilizing the skin conductance signal and behavioral data, we decode the brain's cognitive arousal and performance states, respectively. We determine the association of oxygenated hemoglobin (HbO) data with performance state. Furthermore, we evaluate the total hemoglobin (HbT) signal energy over each music session. ResultsA relatively low arousal variation was observed with respect to task difficulty, while the arousal baseline changes considerably with respect to the type of music. Overall, the performance index is enhanced within the exciting session. The highest positive correlation between the HbO concentration and performance was observed within the higher cognitive loads (3-back task) for all of the participants. Also, the HbT signal energy peak occurs within the exciting session. DiscussionFindings may underline the potential of using music as an intervention to regulate the brain cognitive states. Additionally, the experiment provides a diverse array of data encompassing multiple physiological signals that can be used in the brain state decoder paradigm to shed light on the human-in-the-loop experiments and understand the network-level mechanisms of auditory stimulation.more » « less
-
Abstract Context In children, growth hormone (GH) pulses occur after sleep onset in association with slow-wave sleep (SWS). There have been no studies in children to quantify the effect of disrupted sleep on GH secretion. Objective This study aimed to investigate the effect of acute sleep disruption on GH secretion in pubertal children. Methods Fourteen healthy individuals (aged 11.3-14.1 years) were randomly assigned to 2 overnight polysomnographic studies, 1 with and 1 without SWS disruption via auditory stimuli, with frequent blood sampling to measure GH. Results Auditory stimuli delivered during the disrupted sleep night caused a 40.0 ± 7.8% decrease in SWS. On SWS-disrupted sleep nights, the rate of GH pulses during N2 sleep was significantly lower than during SWS (IRR = 0.56; 95% CI, 0.32-0.97). There were no differences in GH pulse rates during the various sleep stages or wakefulness in disrupted compared with undisrupted sleep nights. SWS disruption had no effect on GH pulse amplitude and frequency or basal GH secretion. Conclusion In pubertal children, GH pulses were temporally associated with episodes of SWS. Acute disruption of sleep via auditory tones during SWS did not alter GH secretion. These results indicate that SWS may not be a direct stimulus of GH secretion.more » « less
-
The prevalence of obesity is increasing around the world at an alarming rate. The interplay of the hormone leptin with the hypothalamus-pituitary-adrenal axis plays an important role in regulating energy balance, thereby contributing to obesity. This study presents a mathematical model, which describes hormonal behavior leading to an energy abnormal equilibrium that contributes to obesity. To this end, we analyze the behavior of two neuroendocrine hormones, leptin and cortisol, in a cohort of women with obesity, with simplified minimal state-space modeling. Using a system theoretic approach, coordinate descent method, and sparse recovery, we deconvolved the serum leptin-cortisol levels. Accordingly, we estimate the secretion patterns, timings, amplitudes, number of underlying pulses, infusion, and clearance rates of hormones in eighteen premenopausal women with obesity. Our results show that minimal state-space model was able to successfully capture the leptin and cortisol sparse dynamics with the multiple correlation coefficients greater than 0.83 and 0.87, respectively. Furthermore, the Granger causality test demonstrated a negative prospective predictive relationship between leptin and cortisol, 14 of 18 women. These results indicate that increases in cortisol are prospectively associated with reductions in leptin and vice versa, suggesting a bidirectional negative inhibitory relationship. As dysregulation of leptin may result in an abnormality in satiety and thereby associated to obesity, the investigation of leptin-cortisol sparse dynamics may offer a better diagnostic methodology to improve better treatments plans for individuals with obesity.more » « less
An official website of the United States government
